
www.elsevier.com/locate/jmr

Journal of Magnetic Resonance 174 (2005) 163–170
Communication

The single basis filter diagonalization method:
A rapid multidimensional data processing scheme

Geoffrey S. Armstrong*, Brad Bendiak

Department of Cell and Developmental Biology and Biomolecular Structure Program, University of Colorado Health Sciences Center,

Mail Stop 8108, P.O. Box 6511, Aurora, CO 80045, USA

Received 20 September 2004; revised 11 December 2004
Abstract

A new way to apply the filter diagonalization method (FDM) that results in a large increase in the speed of calculation of mul-
tidimensional NMR spectra is presented. The speed increase is accompanied by slight differences in spectral lineshapes, although
frequency estimates remain essentially identical. For contoured spectra, the method does not result in appreciable differences from
the full FDM calculation. Optimal parameter sets for an FDM calculation can be estimated far more rapidly, which makes the
FDM more straightforward to employ in practice. The performance of the method versus the full FDM was investigated for both
model and experimental signals. The effect of noise on the method was also studied.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

A flurry of fast multidimensional techniques have
emerged recently [1], fueled by the need, with many mol-
ecules, for high-dimensional NMR spectroscopy. Often,
however, these methods require that the pulse sequence
be altered in such a way as to preclude standard process-
ing techniques. This can make it difficult to directly eval-
uate the performance of the method as compared to
conventional methods such as the Fourier transform
(FT) or mirror-image linear prediction (MI-LP). The fil-
ter diagonalization method (FDM) [2–5] is a generally
applicable data processing scheme that requires no
adaptation of NMR pulse sequences to achieve high-res-
olution spectral estimates from short multidimensional
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data sets. The computational time required for the
FDM, however, can be rather cumbersome, especially
when the calculation needs to be performed several
times to optimize the parameters of the method. This
can make its application somewhat time consuming,
especially for an inexperienced user.

The FDM is a powerful method for the generation of
high-resolution spectral estimates from data sets having
far fewer increments in the indirect dimensions [6–9].
For multidimensional NMR, this is particularly impor-
tant as experimental time constraints limit the number
of points that can be collected. For methods that process
the data orthogonally (by orthogonal we mean that each
dimension is processed independently and sequentially
from each other, as is the case for FT or MI-LP) this
places an upper limit on the resolution that can be
achieved in the indirectly observed dimensions. For the
FDM, which uses all the data points from all FIDs col-
lectively, the resolving power is limited by the total
product of data points in all dimensions, as long as at
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least two points are available in each dimension. Hence,
for multidimensional cases, while the number of points
in each indirect dimension may be small, their product
is very large. This improves the resolving capabilities of
the FDM relative to orthogonal processing methods. It
also leads to a rather intensive calculation, which may
take several hours to complete for large data sets. This,
combined with the fact that the FDM calculation usu-
ally needs to be applied several times [4,5] to arrive at
an optimal parameter set, can make using the FDM a
little laborious for the uninitiated. In this communica-
tion a new way to apply the FDM is presented. This
technique, called the single basis FDM, affords a huge
increase in the speed of the calculation (from hours
to seconds) with only a small sacrifice in the quality
of the resulting spectral estimate. This allows the opti-
mal parameter set for the FDM to be achieved very
quickly, setting the stage for the large basis calculation
to be done confidently. The performance of the new
method on noiseless and noisy model signals, as well
as on a challenging experimental case, has been investi-
gated in comparison with the ‘‘traditional’’ large basis
FDM.
2. Theory

The derivation of the single basis FDM is presented
in 2D, but it can easily be generalized to multiple dimen-
sions [3]. The method is based on the assumption that a
uniformly sampled signal (c (n1,n2): = c (n1s1,n2s2),
(n1 = 0, . . . , N1�1, n2 = 0, . . . , N2�1)) is composed of a
finite number of sinusoids with frequencies x1k and
x2k, and amplitudes dk. This signal can be described
completely by the commutative evolution operators Û 1

and Û 2, acting upon an initial state |U).

cðn1; n2Þ ¼
XK

k¼1

dke
�in1s1x1ke�in2s2x2k

¼ ðUjÛ n1
1 Û

n2
2 jUÞ :¼ ðU00jUn1n2Þ: ð1Þ

Expressing Û 1 and Û 2 in terms of their eigenvalues
(u1k,u2k) and eigenvectors (|!k))

XK

k¼1

ðUj� kÞun11ku
n2
2kð� kjUÞ ¼

XK

k¼1

dke
�in1s1x1ke�in2s2x2k ; ð2Þ

it becomes evident that the frequencies and amplitudes
may be obtained:

x1k ¼ i lnðu1kÞ=s1;
x2k ¼ i lnðu2kÞ=s2;
dk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðUj� kÞ

p
:

ð3Þ

Following Eq. (1), the matrices that describe the
operators Û 1 and Û 2 can be established in terms of
the signal:
½U0�l1l2;m1m2
:¼ðUl1l2 jUm1m2

Þ ¼ cðl1 þ m1; l2 þ m2Þ;
½U1�l1l2;m1m2

:¼ðUl1l2 jÛ 1jUm1m2
Þ ¼ cðl1 þ m1 þ 1; l2 þ m2Þ;

½U2�l1l2;m1m2
:¼ðUl1l2 jÛ 2jUm1m2

Þ ¼ cðl1 þ m1; l2 þ m2 þ 1Þ;
ð4Þ

where l1, m1 = 1, . . . ,N1/2 � 1 and l2, m2 = 1, . . . ,
N2/2 � 1. These matrices can then be diagonalized using
a generalized eigenvalue algorithm to obtain the corre-
sponding eigenvalues and eigenvectors:

U1Bk ¼u1kU0Bk;

U2Bk ¼u2kU0Bk:
ð5Þ

In practice, however, the result of such a calculation is
ill-conditioned, resulting in spectral artifacts that are
highly dependent on the parameters of the calculation.
This requires the solution of a modified eigenvalue prob-
lem [4]:

Uy
0U1Bk ¼ u1kðUy

0U0 þ q2ÞBk;

Uy
0U2Bk ¼ u2kðUy

0U0 þ q2ÞBk:
ð6Þ

This leads to one of the chief adjustable parameters of
the FDM (q2, the regularization parameter). Note that
these matrices have dimensions N1N2/4 · N1N2/4, and
may therefore require solution of a very large eigenvalue
problem. This can be numerically very expensive, so it is
useful to apply a ‘‘filter’’ to the matrix before diagonal-
ization. This is done by casting the problem into the
Fourier basis:

½U0�IJ ¼
XN1=2�1

l1;m1¼0

XN2=2�1

l2;m2¼0

e�is1ðl1ui1
þm1uj1

Þe�is2ðl2ui2
þm2uj2

Þ

� cðl1 þ m1; l2 þ m2Þ;

½U1�IJ ¼
XN1=2�1

l1;m1¼0

XN2=2�1

l2;m2¼0

e�is1ðl1ui1
þm1uj1

Þe�is2ðl2ui2
þm2uj2

Þ

� cðl1 þ m1 þ 1; l2 þ m2Þ;

½U2�IJ ¼
XN1=2�1

l1;m1¼0

XN2=2�1

l2;m2¼0

e�is1ðl1ui1
þm1uj1

Þe�is2ðl2ui2
þm2uj2

Þ

� cðl1 þ m1; l2 þ m2 þ 1Þ:

ð7Þ

The frequencies ui1 and ui2 correspond to the frequency
points of the discrete Fourier transform, and are spread
uniformly over the Nyquist range ðx1min < ui1 < x1maxÞ.
There are half as many frequencies as there are time-do-
main points in each dimension (I = 1, . . . ,i1 +
(i2�1)K1, . . . , K1K2, where K1K2 = N1N2/4), which pre-
serves the overall dimensionality of the matrices. But,
the form of the Fourier basis localizes the large matrix
elements along the diagonal, allowing the generalized
eigenvalue problem to be solved in block diagonal fash-
ion, with each block corresponding to a small frequency
region of the 2D spectrum. In practice, values for K1win

and K2win are often chosen such that Kwin: = K1winK2win
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is in the range of 100–1000. Once Kwin is defined, the cal-
culation is split into frequency windows, each encom-
passing Kwin basis functions and overlapping the
previous window by half. This results in a list of fre-
quencies and amplitudes for each window in the calcula-
tion. The presence of noise and other factors that affect
the Lorentzian behavior of the time-domain data, lead
to numerous entries in the frequency list for each peak.
Therefore, the list of frequencies does not correspond
one-to-one to the list of true spectral peaks. For this rea-
son, it is more effective to generate the spectrum from
the list of FDM frequencies than to analyze the list di-
rectly. The spectrum is calculated using a Gaussian line-
shape [6], with a smoothing parameter (C, chosen to be
on the order of the natural linewidths of the spectral fea-
tures) applied to the linewidths. The results from each
spectral window are then progressively added to the re-
sults from previous windows, weighted according to the
extent of overlap of the spectral windows. In our case a
sine-bell weighting function is used.

The form of the Fourier basis has interesting implica-
tions in certain circumstances. The above derivation was
conducted without considering the relative number of
points available in each dimension. Suppose that one
has a signal in which one of the dimensions has many
more points than the other (N2 � N1). In this case, it
is possible that no resolution enhancement is necessary
in the dimension having many points and the time cost
of evaluating the FDM in large windows may be prohib-
itive. A scheme where the large number of points in the
1D is used more efficiently may be desirable. It would be
useful to have this type of algorithm to generate a
‘‘rough’’ spectral estimate quickly, and still be able to
compute the full 2D FDM calculation once the param-
eters have been optimized and key regions identified.

Consider the case where the size of the window in
which the FDM is calculated is reduced to include only
one frequency basis function in the dimension having a
large number of points. In effect the problem has been
reduced from diagonalizing a K1winK2win · K1winK2win

matrix to performing the same task with a K1win · K1win

one. The calculation of the matrix elements in Eq. (7) is
also simplified, as one of the double Fourier sums may
now be evaluated as a single sum:

XN1=2�1

l1;m1¼0

XN2=2�1

l2;m2¼0

e�is1ðl1ui1
þm1uj1

Þe�is2u2ðl2þm2Þcðl1 þ m1; l2 þ m2Þ

¼
XN1=2�1

l1;m1¼0

XN2�2

l2¼0

e�is1ðl1ui1
þm1uj1

Þe�is2u2l2Gl2cðl1 þ m1; l2Þ:

ð8Þ

This sum is related to the FT in the dimension having
many points with a triangular weighting function given
by ðGl2 ¼ N 2=2� jN 2=2� 1� l2jÞ applied at the fre-
quency u2. If this small calculation is performed at many
different frequencies (i.e., many small windows), the ef-
fect is similar to applying the FT in the dimension with
many points, with FDM estimation in the dimension
having only a few increments. However, the FT fol-
lowed by FDM is not the same as applying the 2D
FDM. The fact that the single basis FDM solves two
eigenvalue problems, whereas the FT-FDM scheme
solves only a single eigenvalue problem, is the essential
difference between the two schemes. In the former case,
each calculation is performed as a narrow 2D strip, and
each window overlaps the previous window, introducing
a redundancy into the calculation that can improve the
results in certain circumstances. The regularization (q2)
also enables a reproducible spectral estimate. However,
the triangular weighting function may introduce some
artifacts in the shape of the resulting lines. In principle
these may be removed by applying an additional func-
tion during the calculation of the matrix elements, but
in practice it is easier to apply Gaussian convolution
once the spectral estimate has been generated.
3. Results

3.1. Model signal

The single basis FDM was compared with the large
basis (‘‘traditional’’) FDM for several representative
cases. It was useful to evaluate the performance of the
method on model signals for which the correct results
were already known. This illustrates the advantages of
the method as well as possible artifacts. The model sig-
nal used in these calculations was designed to represent
a TOCSY-type experiment where magnetization has
been transferred from ‘‘nuclei’’ in the indirect dimension
through a correlated spin system. The signal is therefore
degenerate in both the direct and indirect dimensions
and represents a challenging case for the FDM. The
model signal is composed of 1024 · 16 points, and has
spectral widths of 1000 and 200 Hz in the direct and
indirect dimensions, respectively. All calculations were
performed on an Apple PowerMac G5 desktop com-
puter, with two 2.0 GHz CPUs.

Fig. 1 compares the 2D spectrum and 1D projection
obtained via the single basis method and the ‘‘tradition-
al’’ large basis method. The large basis method is usually
performed in as few windows as possible, generally
employing Kwin values of up to 1500. With the single ba-
sis method, Kwin values rarely exceed 100, making for a
much faster calculation even though there are many
windows. In the indirect dimensions, the full basis avail-
able for the given signal size was employed for both
methods. In Fig. 1, the accuracy of the large basis meth-
od (B) is evident, as the exact lineshape of the model sig-
nal is reproduced in both the 2D spectrum and the 1D
projection, but the computational time is substantial



Fig. 1. Performance of the single basis FDM (A) versus the large basis FDM (B) on a representative model signal. While the differences in the 2D
spectra are minor, the 1D projections demonstrate the limitation of the single basis method (A) in reproducing the correct lineshapes (B). Note that
frequency estimates, however, are essentially identical in both dimensions. The main advantage to the single basis is the relative speed. The large
(Kwin = 1344) calculation took 36 min to complete, while the single basis calculation (Kwin = 8) took less than a second. The model signal consisted of
1024 · 16 points, with spectral widths of 1000 and 200 Hz in the direct and indirect dimensions, respectively.
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(36 min). If one were trying to optimize the FDM
parameters using this method, each change would take
36 min to complete, which is not efficient. Comparing
this to the single basis method (Fig. 1A), the advantages
of the new processing scheme become evident. For the
2D spectra, the differences between the two methods
are very subtle but the frequency estimates are essen-
tially the same. With a computational time of less than
a second for the single basis method, changes to the
parameter set can be evaluated very rapidly. Practically,
this is much more effective than the long calculation.
There are some drawbacks, however. The single basis
calculation produces slightly distorted lineshapes in the
1D projection (Fig. 1A). As discussed above, this can
be alleviated somewhat by applying Gaussian convolu-
tion to the spectrum. If lineshapes that are representa-
tive of the signal are required, it would simply be
more effective to rapidly find the optimal parameter
set using the single basis method and, once a reasonable
spectrum is produced, repeat the calculation using large
windows (the optimal parameter set does not change
appreciably between the single basis and large basis cal-
culation). Therefore, the single basis calculation is well
suited to provide a ‘‘rough’’ estimate of the multidimen-
sional spectrum, which may be optimized very quickly.

It is also useful to examine the effect of noise on the
performance of the single basis method. A model signal
was constructed with similar properties to that already
presented, with the addition of random noise to the
model FIDs. This results in a data set with fairly low



Fig. 2. Effect of noise on the single basis result versus the large basis result. The 1D FT of the first increment of the 2D data (A) is presented to show
the level of noise in the signal. The 1D projections produced from the 2D model signal using both a single basis calculation (B) and a large basis
calculation (C) are compared. Both the large and single basis methods provide essentially identical frequency estimates, but the single basis method
appears to be somewhat more effective in discerning peaks from baseline noise. Any comparison between (A) and (B) would be invalid given that (A)
represents a 1D transform of a single FID, whereas (B) represents the projection from a 2D calculation. The 2D model signal consisted of 1024 · 16
points, with spectral widths of 1000 and 200 Hz in the direct and indirect dimensions respectively. Random noise was added to the model FIDs to
produce the data for this calculation.
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signal-to-noise, as can be seen from the 1D FT of the
first increment of the 2D data (Fig. 2A). The single basis
FDM and large basis FDM were then applied to the
data. The 1D projections of the 2D data from these cal-
culations are shown in Fig. 2. From these projections it
is evident that the single basis FDM (B) is able to distin-
guish signals quite well with respect to noise, giving a
good estimate of the spectral frequencies despite the
perturbation.

3.2. Experimental signal

To perform a complete evaluation of the single basis
method on experimental data, a challenging case for the
FDM was chosen. An experiment was designed to trans-
fer magnetization from a 13C-labeled carbonyl group in
a small 13C-acetylated oligosaccharide (a-DD-Glc-[1 fi 3]-
a-DD-Glc-[1 fi 4]-a-DD-Glc-[1 fi 3]-a-DD-Glc-ol, Sigma
N7263 reduced with NaBH4 [9]), through a HEHAHA
transfer [9–11] to a correlated proton, and through HO-
HAHA to all correlated protons in the sugar ring spin-
system. Because the heteronuclear TOCSY-type experi-
ment is degenerate in both dimensions (although it is
far more degenerate in the proton dimension due to pro-
ton coupling) it has traditionally been avoided for FDM
processing. Instead non-degenerate HSQC type spectra
were preferred. Here, we demonstrate that the FDM
may be used for processing heteronuclear TOCSY-type
experiments using both the single basis and large basis
methods, but the latter, due to the size of signal required
in the proton dimension, is inefficient. This 2D data set
is constant-time [12] in the indirect dimension, which af-
fords an advantage to the FDM [6–9], but it is not a
requirement of the method. The data set is composed
of 1024 · 38 complex points with spectral widths of
1200 and 300 Hz in the proton and carbonyl dimen-
sions, respectively. It was collected using 16 transients
on a 500 MHz Varian Unity INOVA spectrometer
equipped with a standard triple resonance gradient
probe. Phase sensitive data was obtained using TPPI
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[13] in the indirect dimension. For the FDM calcula-
tions, the smoothing parameter (C) was set to 1 Hz in
each dimension (the approximate natural linewidths of
the peaks). For the single basis method, Kwin was set
to 27 (1 in the proton dimension, and 27 in the carbon
dimension, the maximum available over the spectral
range processed). For the large basis calculation, Kwin

was set to 702 (26 in the proton dimension, and 27 in
the carbon dimension). For both calculations the regu-
larization (q2) was optimized manually to 1 · 10�3 using
an iterative procedure.

The resulting spectral estimates from the two FDM
calculations are shown in Fig. 3. As in Fig. 1 the 2D
spectra are quite similar for both methods. There are
some subtle differences between the single basis method
Fig. 3. A comparison of the 2D FDM performed on an experimental data set
are very minor differences between the spectra produced by the two metho
calculations, however, was substantial: the large basis (Kwin = 702) calcula
(Kwin = 27) took just 8 s. The same parameter set was used for both calculatio
experiment, correlating the [13C]carbonyl frequencies to sugar ring proton fre
DD-Glc-[1fi 4]-a-DD-Glc-[1fi 3]-a-DD-Glc-ol) [9]. The experiment was carried o
300 Hz in the proton and carbonyl dimensions, respectively.
(Fig. 3A) and the large basis method (Fig. 3B), mostly in
the crowded regions of the spectrum. The single basis
method seems to reveal more structure in these regions
than the large basis method, but due to the density of
peaks there is more uncertainty to these peaks. It should
be noted that to resolve these spectra, the entire data set
was used in both FDM calculations. This is a departure
from the traditional application of the FDM where the
signal is usually truncated in the direct dimension to
achieve the best results. The reason that the full signal
is required here is the large degeneracy of the signal.
Unfortunately, for the large basis calculation, the large
number of data points in the proton dimension (1024)
results in a very long calculation (1 h 20 min). The single
basis calculation, however, generates a reasonable spec-
 

using the single basis method (A) and the large basis method (B). There
ds, mostly in the crowded regions. The difference in time for the two
tion took 1 h 20 min to complete, while the single basis calculation
ns. The signal was from a constant-time 2D heteronuclear TOCSY-type
quencies in a small 13C-acetylated oligosaccharide (a-DD-Glc-[1fi 3]-a-
ut with acquisition of 1024 · 38 points and spectral widths of 1200 and
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tral estimate with a short computational time (8 s). This
allows the optimization of the FDM parameters (q2, C,
Kwin, see Section 2) to be completed very rapidly and
vastly improves the efficiency of the FDM.

Mathematically, the single basis FDM is related to
applying a Fourier transform in the large dimension,
followed by 1D FDM in the short dimension. However,
the two schemes are fundamentally different. Even
though the windows are narrow in the large dimension,
the single basis FDM still involves the solution of two
eigenvalue problems. With an FT-FDM type scheme,
however, the FT estimate is solely 1D and the FDM is
then applied as a single eigenvalue problem. Fig. 4 illus-
Fig. 4. A comparison of the FDM performed on a zoomed region of the expe
and using a Fourier transform in the 1H dimension followed by a 1D FDM c
FDM is applied as a series of narrow 2D windows that overlap each other, it
crowded areas. The peaks generated by FT followed by 1D FDM, are genera
other sequential 1D methods (FT and LP).
trates this difference clearly. Because the single basis
FDM result is comprised of a large number of narrow
2D windows that overlap each other, it provides a better
estimate of frequencies in the indirect dimension than
the FT-FDM, which is merely a series of 1D slices. This
is especially apparent in crowded regions. There is no
advantage to using the FT followed by the FDM. The
2D single basis FDM uses information from all points
to estimate frequencies in both dimensions simulta-
neously, and provides the parameters necessary for a
larger basis calculation. FT followed by FDM, however,
is incapable of establishing parameters for the full FDM
calculation, for any number of dimensions.
rimental data set presented in Fig. 3, using the single basis method (A)
alculation in the [13C]carbonyl dimension (B). Because the single basis
is able to provide a more precise estimate in the indirect dimension in
ted from a series of 1D slices and are subject to the same limitations as
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The single basis FDM is an effective method for rap-
idly (usually several orders of magnitude faster than the
large basis method) optimizing the FDM parameter set,
and obtaining a reasonable spectral estimate more effi-
ciently than with the ‘‘traditional’’ large basis FDM. It
can be accomplished without any modification of the
FDM algorithm, merely by specifying that only one ba-
sis function be used in each window in the direct dimen-
sion. The lineshapes produced by this method may not
be as good as those produced by a large basis calcula-
tion, but once a parameter set has been established using
the single basis method, a large basis calculation can be
performed easily to verify the results. The method also
appears to be fairly robust with respect to noise. For
simplicity, the method has been demonstrated on 2D
cases (which will not differ significantly from orthogonal
methods such as LP), but the real advantages to the
method are realized with multidimensional (3D and
higher) applications[9]. In these cases, the larger signal
‘‘area’’ improves the accuracy and resolving power of
the FDM in every dimension. It should also be noted
that this application of the FDM to a highly degenerate
signal demonstrates the flexibility of the FDM in NMR
data processing. Where the single basis FDM should
prove most useful is in processing of ongoing experimen-
tal data sets during acquisition, to make informed deci-
sions as to whether further acquisition of indirect
increments is really necessary. The single basis FDM is
a powerful adaptation of the ‘‘traditional’’ FDM pro-
cessing scheme, which improves the efficiency and over-
all ease of use of the method.
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